
 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

1

Cloud Brokerage Architecture: Enhancing Service Selection with

B-Cloud-Tree Indexing

Rama Krishna Mani Kanta Yalla

Origin Hubs Inc,

Morrisville, North Carolina, USA

ramakrishnayalla207@gmail.com

ABSTRACT

Providing scalable, adaptable, and affordable options for data processing, management, and

storage, cloud computing has completely changed the information technology environment.

The swift expansion of cloud service providers (CSPs) has posed a challenge for consumers,

especially small and medium-sized organizations (SMEs), in terms of choosing the best

services. This study presents a novel cloud brokerage architecture that uses a B-Cloud-Tree

indexing structure to improve the choice of cloud services.

Objectives: The main goals of this research are to decrease the computational load on users,

increase the scalability of cloud service brokerage systems, and improve the efficiency and

accuracy of cloud service selection.

Methods: Based on feature similarity, the suggested architecture clusters CSPs using a multi-

level balanced tree structure (B-Cloud-Tree). This structure makes it possible to query interval

and exact data, facilitating quick and accurate retrieval of CSP data. Property encoding,

indexing key generation, and an extensive service selection process are all part of the

methodology.

Results: According to experimental assessments, the B-Cloud-Tree design performs better than

the state-of-the-art techniques in terms of match rate, scalability, precision, recall, and query

execution time. The ablation study validates the efficacy of every element in the framework,

showcasing its resilience in managing intricate service selection assignments.

Conclusion: The B-Cloud-Tree design solves the difficulties brought on by the variety and

complexity of cloud services by providing a scalable, accurate, and effective solution for cloud

service brokerage. Future developments in cloud service selection algorithms will benefit

greatly from the solid basis this research offers.

Keywords: indexing structure, service matching, B-Cloud-Tree, cloud computing, cloud

service selection, cloud brokerage, scalability, accuracy, and efficiency.

1. INTRODUCTION

By offering scalable, adaptable, and affordable options for data processing, management, and

storage, cloud computing has completely changed the information technology industry. Small

and medium-sized businesses (SMEs) benefit most from it since it enables them to use high-

performance computers without incurring large upfront infrastructure costs. Businesses can

scale resources as needed thanks to the elasticity of the cloud. However, choosing the best

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

2

cloud service has become more difficult due to the expanding number of cloud service

providers (CSPs) and the range of services they provide. Due to the large variety of CSPs with

varying performance indicators, pricing structures, and service level agreements (SLAs),

customers find it difficult to make educated judgments.

Direct comparisons between providers become difficult due to this complexity, which is

exacerbated by the variety of SLAs and the absence of standardized CSP feature encoding. The

market for cloud services is likewise very fragmented, with many different providers providing

a wide range of choices. This makes it difficult for potential clients, especially those with little

experience or funding, as they have to sort through a plethora of options, which can take a lot

of time and resources.

Cloud brokerage has become an essential intermediary layer in the cloud computing ecosystem

to address these issues. A cloud broker acts as a go-between for cloud users and service

providers, providing aggregation, integration, and customization services to suit users'

individual requirements. Cloud brokers are especially helpful in guiding clients through the

intricacies of choosing cloud services. They handle things like mediation, monitoring, and

service discovery, which can be challenging for end users to do independently.

Assisting customers in choosing the best CSPs for their needs is one of a cloud broker's primary

responsibilities. This entails dealing with a number of important problems that are specific to

cloud computing settings. For instance, meeting user needs frequently necessitates combining

several CSPs because no single provider may be able to deliver all essential services. However,

because of the various relationships—including subcontracting arrangements—between

providers, aggregating CSPs is a challenging operation. When combining providers that use

the same subcontractor for storage space, it is imperative to prevent overstretching existing

resources since this may result in service disruptions.

This study presents a thorough cloud brokerage architecture intended to maximize cloud

service selection in order to address these issues. The architecture includes a brand-new

indexing technique called the Bcloud-tree, created especially for effective administration and

retrieval of CSP data. A multi-level balanced tree structure called the Bcloud-tree groups CSPs

according to how comparable their features are, making it easier for brokers to obtain pertinent

information and reply to user queries promptly. Interval and exact queries are supported by the

Bcloud-tree, giving users the ability to define acceptable value ranges or specific requirements

for a range of service aspects, including price, performance, and security. The suggested design

addresses the inefficiencies related to the present service selection techniques while improving

the accuracy of matching user requirements with accessible CSPs. It uses sophisticated

algorithms to choose the optimal CSPs for every user query by combining static and dynamic

evaluation criteria. These techniques increase the overall effectiveness of the service selection

process while lessening the computational burden on users.

The Bcloud-tree indexing method also reduces "encoding collisions," which occur when

separate CSPs get the same encoding and produce inaccurate query results. This issue is

especially problematic for traditional service selection techniques, as badly constructed

indexing systems can result in large-scale inefficiencies. The Bcloud-tree addresses this

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

3

problem by producing indexing keys that precisely represent the level of similarity between

CSPs, enhancing the precision of query responses.

The effectiveness of the proposed cloud brokerage architecture is demonstrated through

extensive experimental testing using both actual and fake cloud data. Modern techniques are

much outperformed by the Bcloud-tree, which offers quicker query processing speeds and

better service selection accuracy. It is also established that the design is scalable, meaning that

big datasets may be handled without a noticeable performance loss.

The key objectives are:

● Complex Cloud Ecosystem: The rapid growth of cloud services has led to a complex

environment, making it difficult for users to select the most suitable services.

● Role of Cloud Brokers: Cloud brokers have emerged as essential intermediaries,

helping users navigate and choose from the vast array of available cloud service

providers (CSPs).

● Innovation with Bcloud-tree: The Bcloud-tree architecture is introduced to enhance the

management and retrieval of CSP information, leading to more efficient service

selection.

● Overcoming Traditional Limitations: This new architecture addresses the shortcomings

of conventional methods by reducing computational demands and improving the

accuracy of service matching.

● Proven Performance: Extensive testing shows that the proposed architecture

outperforms existing approaches in both efficiency and scalability.

According to Lin et al. (2016), cloud service providers have difficulties as a result of

inadequate indexing structures, which lead to a lack of precision and effectiveness in the service

selection procedure. They suggest a cloud brokerage architecture to improve the effectiveness

of cloud service selection in order to overcome these problems. The accuracy and general

performance of the service selection algorithm are enhanced by this architecture's novel

approaches to managing and retrieving cloud service provider data.

The substantial obstacles that customers must overcome in order to effectively choose the finest

cloud services are covered by Lin et al. (2016). It takes a lot of time since customers have to

gather and examine a lot of data from different service providers. The authors suggest a cloud

brokerage architecture that expedites the service selection procedure in order to address this.

By streamlining the management and retrieval of provider data, this architecture aims to

increase the effectiveness of cloud service selection while assisting customers in making

quicker and more informed selections.

2. LITERATURE SURVEY:

The integration of resource-constrained wireless sensor networks (WSNs) with the essentially

limitless resources of cloud computing is examined by Settouti et al. (2019). This combination

offers issues, especially for WSN owners who have to choose appropriate cloud providers. The

authors provide an indexation technique for public IaaS virtual machines that uses an AVL-

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

4

tree structure improved by a Z-order function to maximize service arrangement and search

efficiency, taking into account the heterogeneity of both clients and services. Based on user

preferences, this methodology improves cloud service indexing, as demonstrated by

experimental results that show it works better than similar methods in the literature.

In response to the increasing need for cloud services, Solainayagi and Ponnusamy (2019)

have developed the Trustworthy and Scalable Service Providers Algorithm, which improves

resource allocation by facilitating matchmaking between various clouds. Because they mostly

rely on expert judgments, the current approaches frequently struggle with flexibility and correct

trust value estimations. The suggested technique assesses multi-attribute decision-making to

reduce user load and enhance system stability. It is based on information entropy theory.

According to experimental results, the strategy outperforms previous methodologies in terms

of reducing system execution time by 2 milliseconds, reducing communication costs by 9.33%,

and raising trust scores by 39.33%.

Mohan and Premchand (2020) present the Merkle-B-Cloud Tree Infrastructure (MBCTI) as

a solution to the problem of secure and effective cloud service selection. In contrast to current

brokerage schemes that rely solely on brokers without conducting due diligence on service

suggestions, MBCTI offers a safe platform for customers to store and retrieve data. This

algorithm manages transactions without granting the Cloud Service Provider (CSP) access to

the data of other users, ensuring data integrity and reliability. Users may safely manage and

access their data without interruption because to the system's emphasis on end-to-end security

through integrated authentication mechanisms.

The expanding role of cloud service brokers (CSBs) in helping users with the difficult chore of

choosing among a large assortment of cloud services is reviewed by Vakili et al. (2019).

Examining contemporary methods of cloud service brokerage, the research divides them into

two categories: single-service and multiple-service models. The authors examine different

CSBs in light of these standards and provide a set of characteristics that characterize an efficient

CSB. According to their findings, CSBs that make use of numerous service models are more

universally adaptable and effective in a variety of cloud computing environments, and they

also correspond more closely with the features that have been presented.

Mohanarangan Veerappermal Devarajan (2020) discusses the important security

challenges in cloud computing for healthcare because to the sensitivity of patient data and

rigorous restrictions. A thorough security management system, including risk assessment,

encryption and multi-factor authentication, and constant monitoring, is suggested by this study.

Case studies from organizations such as the Mayo Clinic demonstrate how secure cloud

solutions may be used successfully.

Khan (2020) presents a hybrid approach to service brokering for multi-cloud architectures that

combines throttled round-robin load balancing with a normalization-based strategy to improve

resource management. Because cloud computing platforms share resources and services, fault-

tolerant, dependable, and effective infrastructures are required. The suggested approach acts as

a middleman between customers and cloud service providers, maximizing the provision of real-

time services at the lowest possible cost by choosing the best data centers and virtual machines.

The methodology outperforms other existing methods in response time, data center processing

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

5

time, and financial cost by up to 17.39%, 31.35%, and 7.06%, respectively, by including both

static and dynamic evaluation criteria.

Elhabbash et al. (2019) offer a methodical examination of cloud brokerage services with a

particular emphasis on the viewpoint of the client. Brokers are now crucial in assisting clients

in navigating the intricacies of service selection and handling the dimensionality,

heterogeneity, and unpredictability of cloud offerings as cloud services grow more widespread.

In order to categorize and comprehend cloud brokerage techniques, this survey methodically

examines the literature and presents a novel taxonomy for describing cloud brokers. The

authors analyze these strategies from a number of angles, such as engineering process,

motivation, and functionality. The assessment finds that cloud brokerage is still a young area

with many unmet difficulties, despite notable achievements.

A thorough investigation of cloud brokering in interconnected cloud computing environments

(ICCE), including hybrid, multi-cloud, inter-cloud, and federated cloud configurations, is

carried out by Chauhan et al. (2019). The study draws attention to the difficulties with

portability and interoperability brought on by cloud providers' proprietary technology and

access interfaces. In their capacity as middlemen, cloud brokers assist customers in navigating

these difficulties by negotiating with suppliers to choose the finest services in accordance with

user needs. The study examines current cloud brokering frameworks, provides a taxonomy of

methods, and evaluates the benefits and drawbacks of each. Future directions for research are

noted, and a model to deal with these problems is suggested.

A new paradigm in cloud brokerage is presented by Venkateswaran and Sarkar (2020), who

offer a framework intended to protect users from the difficulties of multi-cloud and hybrid

systems. The authors introduce the idea of a Meta Cloud, a virtual data center built on top of

several supplier clouds by cloud brokers that provides unified simplicity and reliability over

provider clouds that aren't all the same. Value-added multi-cloud products can be created with

the help of Meta Services and Meta Clouds. In addition to outlining the architecture and

research topics required to move cloud brokerage into the next generation, the paper makes the

case that this strategy might greatly increase the adoption of multi-cloud computing. The

suggested design is validated by the experimental results.

A fuzzy logic-based intelligent cloud broker is proposed by Nagarajan and Thirunavukarasu

(2019) to overcome the difficulties novice cloud customers encounter when defining service

requirements. In most cloud systems, choosing the right service is mostly dependent on exact

user requirements, which might cause mismatches when users are unsure. By applying

fuzzification and de-fuzzification techniques to analyze ambiguous needs and pinpoint

appropriate services, the suggested broker acts as a middleman. It also uses a fuzzy decision

tree for decision-making and the Sugeno integral for service aggregation. Through MATLAB

and R Studio simulations, the efficacy of the broker is confirmed, showcasing its potential to

enhance service matching in cloud contexts.

Achar et al. (2020) present a broker-based mechanism that evaluates providers according to

resource and performance needs in order to address the problem of choosing appropriate cloud

providers. Performance guarantees are frequently disregarded by cloud providers, who mostly

concentrate on satisfying SLAs linked to resource requirements, leaving a gap in the services

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

6

offered. The suggested method assists SaaS providers in selecting the best cloud provider based

on Quality of Service (QoS) needs for hosting apps. Based on experimental results, this strategy

reduces cost and complexity for SaaS providers while successfully identifying acceptable

providers to meet client criteria and a variety of application needs.

In order to satisfy the growing needs of businesses, Latif et al. (2020) investigate the necessity

of connecting computing services across various cloud providers. The supply of services and

resource management provide major issues for cloud providers operating in highly dynamic

and unpredictable contexts. In order to operate interconnected clouds efficiently, the study

highlights how crucial it is to configure architectural components and brokering protocols

consistently. A number of methods for tying together geographically separated clouds are

examined, with an emphasis on resource management, design features, and brokering protocols

that combine services from several suppliers while preserving service quality. Additionally, a

number of projects are analyzed in the report, with their usefulness highlighted and areas for

further investigation identified.

Raj Kumar Gudivaka(2020),introduces a Two-Tier Medium Access Control (MAC) solution

that maximizes resource management and energy efficiency in cloud-based robotic process

automation (RPA). This framework outperforms existing protocols in terms of throughput,

power consumption, and overall QoS satisfaction. It does this by utilizing Lyapunov

optimization techniques to improve resource allocation, prioritize workloads, and improve

system performance across several Quality of Service (QoS) metrics.

In mobile cloud topologies, where mobile users (MUs) can offload tasks to adjacent edge

clouds (MEC) or faraway public clouds (MCC), Li et al. (2019) investigate the best pricing

and service selection. MCC provides more processing power, but because of distance, it

frequently causes significant transmission delays. Despite being quicker and closer, MEC's

resources are constrained. The study uses a Stackelberg game to mimic the interaction between

edge service providers (ESPs) and public cloud service providers (PSPs), where MUs select

services based on performance and cost, and providers set rates. The findings show that when

task loads increase, MUs choose public cloud services over edge cloud services for lesser jobs.

3. METHODOLOGY

This technique describes how to put in place a cloud brokerage architecture with the goal of

increasing the effectiveness of choosing cloud services. The B-Cloud-Tree indexing structure

is the foundation of this method; it optimizes cloud service provider (CSP) information

retrieval, organization, and management. Encoding CSP characteristics, building the B-Cloud-

Tree for effective data management, and creating a strong service selection algorithm are the

three main components of the technique. Together, these elements improve the scalability,

accuracy, and speed of choosing the best cloud services for users.

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

7

Figure 1 B-Cloud-Tree Indexing Structure Overview

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

8

A crucial part of the suggested cloud brokerage design is the B-Cloud-Tree Indexing Structure,

which is seen in Figure 1. First, Cloud Service Provider (CSP) attributes are encoded into a

standard binary or decimal format. The CSP's location within the B-Cloud-Tree is then

ascertained by interleaving these encoded attributes to provide an indexing key. Because it

groups comparable CSPs together, the tree structure makes it easier to query and retrieve data

efficiently. This allows for both interval and exact queries. The inefficiencies of conventional

methods are addressed by this indexing technique, which improves the speed and accuracy of

cloud service selection.

3.1 Property Encoding

The process commences with the encoding of the CSP properties into a common format. This

is translating CSPs' numerical and category properties into binary or decimal values. Through

effective indexing and retrieval, this encoding guarantees that CSPs with comparable properties

are clustered together in the B-Cloud-Tree, enabling precise and quick service selection

queries. The first stage in structuring cloud service provider (CSP) data for effective retrieval

is property encoding. A particular encoding function is used to transform each CSP's

attributes—which might be categories or numerical, such as pricing or storage capacity—into

a standardized binary or decimal format. This procedure is essential because it lets the B-Cloud-

Tree to quickly and accurately find CSPs with comparable attributes by grouping them

together. Property encoding guarantees that the system can quickly identify and get CSPs that

closely match the specified criteria when users query for certain service features. This improves

the efficiency and precision of service selection by standardizing the representation of CSP

attributes.

𝐸𝑝𝑖 = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑝𝑖) (1)

Each property 𝑝𝑖 of a CSP is encoded using a specific function that converts the property into

a binary or decimal format. The encoded property 𝐸𝑝𝑖 is then used in the indexing process to

facilitate quick and accurate retrieval of CSPs.

3.2 Indexing Key Generation

After property encoding, an indexing key is generated by interleaving the binary or decimal

values of the encoded properties. This key determines the position of each CSP within the B-

Cloud-Tree, ensuring that CSPs with similar attributes are stored in close proximity, which is

crucial for efficient querying and retrieval. Once the CSP properties are encoded, the next step

is to generate an indexing key, denoted as 𝑍, which plays a pivotal role in determining the

placement of CSPs within the B-Cloud-Tree. The indexing key is created by interleaving the

binary or decimal values of the encoded properties 𝐸𝑝1, 𝐸𝑝2, … , 𝐸𝑝10. This interleaving process

ensures that CSPs with similar attributes are stored in close proximity within the tree structure.

The proximity of similar services in the B-Cloud-Tree is essential for efficient querying

because it reduces the time needed to search for and retrieve CSPs that match a user's service

request. The indexing key generation, therefore, is a critical step that directly influences the

speed and effectiveness of the entire cloud service selection process.

𝑍 = 𝐸𝑝1||𝐸𝑝2 ∥ ⋯ ∥ 𝐸𝑝10 (2)

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

9

The indexing key 𝑍 is generated by interleaving the binary or decimal representations of the

encoded properties. This key determines the position of the CSP in the B-Cloud-Tree, ensuring

that similar services are stored in proximity for efficient querying.

3.3 Interval Query

This mechanism allows users to specify a range of acceptable values for different CSP

properties. The system calculates a range of indexing keys (from minimum to maximum) based

on the user's criteria, which is then used to search the B-Cloud-Tree. This approach is

particularly useful when users need to find CSPs that fall within a certain range of attributes,

such as a price range or performance level. The interval query mechanism is designed to handle

user queries that specify a range of acceptable values for different CSP properties. In this

approach, a range 𝑄 = [𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥] is computed, which represents the minimum and

maximum indexing keys based on the user's specified property ranges. This interval is then

used to search the B-Cloud-Tree for CSPs whose attributes fall within the specified bounds.

The interval query method is particularly useful when users do not have exact requirements but

instead need services that fall within a certain range of attributes (e.g., price range or

performance levels). By using this interval-based approach, the B-Cloud-Tree can efficiently

identify and retrieve a set of CSPs that are most likely to meet the user's needs, thereby

optimizing the service selection process.

𝑄 = [𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥] (3)

For interval queries, the range of possible indexing keys is calculated based on the minimum

and maximum values of the user's property requirements. This range 𝑄 is then used to search

the B-Cloud-Tree for CSPs that match the specified criteria.

3.4 B-Cloud-Tree Construction

A multi-level balanced tree structure called the B-Cloud-Tree is used to arrange CSP data

according to encoded attributes. It makes it simpler to obtain pertinent services by combining

comparable CSPs. The tree guarantees rapid access to the most suitable CSPs for a user's

requirements by supporting both interval and precise queries. In order to show the similarities

between CSPs, unique indexing keys must be created during the creation process. The B-

Cloud-Tree construction involves creating a multi-level balanced tree structure where each

node represents a cluster of Cloud Service Providers (CSPs) with similar attributes. The process

is primarily based on the encoding of CSP properties and the generation of an indexing key.

Let 𝐸𝑝 = {𝐸𝑝1, 𝐸𝑝2, … , 𝐸𝑝𝑛} represent the encoded properties of a CSP, where each 𝐸𝑝𝑖 is the

encoded value of the 𝑖-th property of the CSP (e.g., price, storage capacity).

The Indexing Key 𝑍 for a CSP is generated by interleaving the encoded properties:

𝑍 = 𝐸𝑝1 ∥ 𝐸𝑝2 ∥ ⋯ ∥ 𝐸𝑝𝑛 (4)

Where || denotes the interleaving or concatenation operation, which ensures that CSPs with

similar properties are stored in close proximity within the tree structure. A methodical approach

to efficiently query CSP data storage and organization is the B-Cloud-Tree architecture. CSPs

with comparable features are stored next to each other in the tree structure thanks to the B-

Cloud-Tree's encoding of CSP properties and interleaving technique, which creates an indexing

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

10

key. The user's query can be quickly and accurately matched CSPs thanks to this close

closeness. The tree's balancing is essential to preserving its effectiveness since it guarantees

that the tree's height is reduced, which expedites search times. The resulting B-Cloud-Tree is a

very useful structure for cloud service selection jobs since it can handle interval searches (for

ranges of attributes) as well as exact queries (for single attributes).

Algorithm 1: B-Cloud-Tree Service Selection algorithm

Input: User query 𝑄 with properties 𝑝1, 𝑝2, … , 𝑝𝑘

Output: List of matching CSPs 𝐶𝑚𝑎𝑡𝑐ℎ

BEGIN

 Normalize user query 𝑄

 Encode query into intervals 𝑄 = [𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥]

 Search the B-Cloud-Tree:

 FOR each node in B-Cloud-Tree

 IF node.key falls within [𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥]

 Add CSP to candidate list

 ELSE IF node.key > 𝑍𝑚𝑎𝑥

 BREAK loop

 END IF

 END FOR

 Refine candidate list:

 FOR each CSP in candidate list

 IF CSP properties fully match query 𝑄

 Add to final selection 𝐶𝑚𝑎𝑡𝑐ℎ

 END IF

 END FOR

 IF 𝐶𝑚𝑎𝑡𝑐ℎ is empty

 RETURN "No matching CSP found"

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

11

 ELSE

 RETURN 𝐶𝑚𝑎𝑡𝑐ℎ

 END IF

END

The algorithm 1 begins with normalization, where the user's query is adjusted to ensure all

relevant properties are accounted for. Next, encoding transforms the query into a specific range

based on the user’s defined property values. Following this, the B-Cloud-Tree is searched to

identify Constraint Satisfaction Problems (CSPs) whose keys fall within the specified query

range. The algorithm then refines this candidate list to ensure that the final selection aligns

closely with the user's needs. Finally, the system returns the list of matching CSPs or an error

message if no suitable matches are found.

3.4 Performance Metrics

The success and efficiency of the B-Cloud-Tree service selection technique are determined by

a number of performance measures. The first metric is called Query Execution Time (QET),

and it calculates the typical amount of time needed to run a user query and find cloud service

providers (CSPs) that match. This metric is crucial since it measures the B-Cloud-Tree's query

processing efficiency, which directly affects user experience. The ratio of pertinent CSPs

obtained to all CSPs retrieved is known as precision, and it is another crucial statistic. Precision

is a measure of how well the B-Cloud-Tree matches user needs with suitable CSPs,

guaranteeing that the system returns results that are highly relevant. In a similar vein, recall is

essential for assessing how thorough the search was. It can be defined as the proportion of all

relevant CSPs in the database divided by the number of relevant CSPs that were retrieved. A

high recall guarantees that every possible alternative is taken into account, which broadens the

scope of the decision process. The computational and storage resources needed to update and

maintain the B-Cloud-Tree structure are referred to as indexing overhead.

This statistic is crucial since it evaluates the extra expense of using the B-Cloud-Tree in

comparison to alternative approaches, assisting in the determination of its cost-effectiveness.

Another crucial performance indicator is scalability, which is the system's capacity to continue

operating at a high level even when the quantity of CSPs or query complexity rises. Scalability

guarantees the B-Cloud-Tree technique's continued efficacy and efficiency, regardless of the

growth of the cloud service market or the complexity of user requests. Lastly, the fraction of

user requests that successfully return at least one matching CSP is measured by the Match Rate.

This measure assesses how well the B-Cloud-Tree satisfies user requests and how well it fits

user demands by offering pertinent service options. Together, these performance indicators

offer a thorough assessment of the B-Cloud-Tree service selection method, guaranteeing that

it produces precise, effective, and scalable outcomes when choosing a cloud service provider.

Table 1 Performance Metrics for the B-Cloud-Tree Service Selection Technique

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

12

Process Step Input Values Execution
Output

Values

Property

Encoding

CSP properties

(e.g., price,

capacity)

Each property 𝑝𝑖 is encoded

into a binary or decimal format

using a specific encoding

function.

Encoded

properties

𝐸𝑝1

Indexing

Key

Generation

Encoded

properties

𝐸𝑝1, 𝐸𝑝2, …

Binary or decimal values of

encoded properties are

interleaved to generate an

indexing key 𝑍.

Indexing key

𝑍

Interval

Query

User-defined

property ranges

The system computes the

range 𝑄 − [𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥]

based on the user's query. This

range is used to search the 𝐵 -

Cloud-Tree for matching CSPs.

Candidate

list of CSPs

B-Cloud-

Tree Search

Indexing key

range 𝑄 −

[𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥]

The B-Cloud-Tree is searched

for nodes with keys within the

specified range.

Refined

candidate

list of CSPs

Final

Selection

Algorithm

Refined

candidate list,

user query

The algorithm further refines

the candidate list by matching

CSP properties with the exact

query requirements. If a full

match is found, it's added to

the final selection.

Final list of

matching

CSPs 𝐶𝑚𝑎𝑡𝑐ℎ

These steps—Property Encoding, Indexing Key Generation, Interval Query, B-Cloud-Tree

Search, and the Final Selection Algorithm—together form a systematic approach that enhances

the efficiency and accuracy of cloud service selection. The table 1 summarizes this

methodology, offering a clear framework for understanding how data flows and decisions are

made within the B-Cloud-Tree structure. Property encoding is the first step in the process,

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

13

standardizing the various attributes of Cloud Service Providers (CSPs) into a consistent format

for processing quickly. This important phase generates encoded values that enable faster

retrieval of CSPs based on their attributes, guaranteeing that related services are grouped

together for more effective searches. After that, these encoded data are combined in the

Indexing Key Generation phase to provide an indexing key that establishes the position of each

CSP inside the B-Cloud-Tree. Efficient and precise query execution depends on the placement

of CSPs, which keeps comparable CSPs close to one another and cuts down on retrieval time.

The Interval Query procedure comes next, and it starts when a user enters a range of permissible

property values. Based on these parameters, the system determines a range of indexing keys

and retrieves a preliminary list of possible CSP matches. This is especially useful for consumers

whose needs are flexible. The next step in the procedure is the B-Cloud-Tree Search, which

narrows the list of possible matches by scanning the tree for CSPs inside the given indexing

range. In order to guarantee that consumers obtain the finest cloud services for their unique

requirements, the last Selection Algorithm filters this candidate list in the last step.

4. RESULT AND DISCUSSION

Considerable progress has been made in the effectiveness and precision of cloud service

provider (CSP) selection with the suggested B-Cloud-Tree methodology. The system

guarantees that related services are grouped together and speeds up retrieval by encoding CSP

features into a common format, which makes searches more effective. By deciding where CSPs

are placed within the B-Cloud-Tree, the indexing key generation stage plays a critical function

that directly affects query execution speed and correctness. By giving users the option to

designate a range of acceptable property values, the Interval Query technique further expands

the system's versatility and produces a more specialized list of possible CSP matches.

Important parameters like Query Execution Time (QET), precision, recall, indexing overhead,

scalability, and match rate were used to assess the B-Cloud-Tree's performance.

The efficiency of the B-Cloud-Tree is demonstrated by the results, which show a considerable

reduction in query execution time when compared to older approaches. Precision and recall

measures verify that the system offers extremely relevant results while taking into account

every alternative, guaranteeing thorough service selection. Furthermore, the scalability of the

B-Cloud-Tree guarantees that the system will continue to function even when the number of

CSPs rises or query complexity increases. The system's ability to consistently return

appropriate CSPs in response to user queries is further demonstrated by the high match rate.

All things considered, the B-Cloud-Tree provides a solid, scalable solution for choosing cloud

services, surpassing current approaches in terms of accuracy and efficiency.

Table 2 Comparison of Cloud Service Selection Mechanisms

Parameter MOSB_ALB

(2020)

CSSV Scheme

(2020)

B-Cloud-Tree

(Proposed)

Scalability 1 2 2

Fault Tolerance 2 1 2

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

14

Complexity 1 2 0

Performance Metrics 2 2 2

Energy Efficiency 1 2 2

Resource Utilization 2 1 2

Latency 0 1 0

Suitability for Large-Scale

Systems

1 2 2

The table 2 gives the comparison of the performance of three load balancing approaches:

MOSB_ALB (2020), CSSV Scheme (2020), and the proposed B-Cloud-Tree Architecture.

Scalability and resource utilization are rated highest for B-Cloud-Tree and CSSV, while

MOSB_ALB shows moderate performance. B-Cloud-Tree excels in fault tolerance and

resource utilization but is less complex. In contrast, MOSB_ALB has moderate complexity and

energy efficiency, with lower latency. CSSV offers a balance between high scalability and

performance but has higher complexity. Overall, B-Cloud-Tree is highly suitable for large-

scale systems, combining high resource efficiency and fault tolerance with low latency.

Figure 2 Comparative Analysis of Cloud Service Selection Mechanisms

0 1 2 3 4 5 6 7

Scalability

Fault Tolerance

Complexity

Performance Metrics

Energy Efficiency

Resource Utilization

Latency

Suitability for Large-Scale Systems

MOSB_ALB (2020) CSSV Scheme (2021) B-Cloud-Tree (Proposed)

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

15

A comparison of several cloud service selection strategies is shown in Figure 2. It draws

attention to important characteristics like suitability for large-scale systems, fault tolerance,

complexity, energy efficiency, resource usage, latency, and performance indicators. The

graphic demonstrates how the B-Cloud-Tree Architecture performs in terms of simplicity and

scalability when compared to other mechanisms such as the MOSB_ALB and CSSV Scheme.

This makes it an extremely useful method for choosing cloud services in complex contexts.

Table 3 Ablation study table of B-Cloud-Tree service selection

Component(s)

Evaluated

Precision Recall Indexing

Overhead

Scalability

Property

Encoding (PE)

0.85 0.80 0 2

Indexing Key

Generation

(IKG)

0.82 0.75 1 1

Interval Query

(IQ)

0.88 0.85 1 2

B-Cloud-Tree

Search (TS)

0.90 0.85 2 2

PE + IKG 0.84 0.78 1 1

PE + IQ 0.87 0.83 1 2

PE + TS 0.91 0.86 2 2

IKG + IQ 0.86 0.80 1 2

IQ + TS 0.92 0.88 2 2

PE + IKG + IQ 0.89 0.84 1 2

PE + IKG + TS 0.93 0.90 2 2

IKG + IQ + TS 0.90 0.85 2 2

PE + IQ + TS 0.93 0.88 2 2

Full B-Cloud-

Tree Method

(PE + IKG + IQ

+ TS)

0.93 0.90 2 2

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

16

The ablation study table 3 evaluates the impact of different components in the B-Cloud-Tree

method on key performance metrics: precision, recall, indexing overhead, and scalability.

Property Encoding (PE) and Indexing Key Generation (IKG) alone provide moderate precision

and recall with low indexing overhead. Adding Interval Query (IQ) or B-Cloud-Tree Search

(TS) improves precision and scalability but increases indexing overhead. The full B-Cloud-

Tree method, combining all components (PE, IKG, IQ, TS), achieves the highest precision

(93%) and recall (90%), though it also results in the highest indexing overhead. This

demonstrates that integrating all components optimizes performance at the cost of increased

complexity.

Figure 3 Ablation Study of B-Cloud-Tree Service Selection Technique

An ablation analysis of the B-Cloud-Tree service selection technique is shown in Figure 3,

which assesses the performance of its constituent parts (B-Cloud-Tree Search, Property

Encoding, Indexing Key Generation, and Interval Query) using metrics such as scalability,

precision, recall, and indexing overhead. The study highlights the efficacy of the whole B-

Cloud-Tree approach in cloud service selection by showing that it achieves the maximum

precision and recall while keeping tolerable overhead. The method includes all components.

5. CONCLUSION

We provide a revolutionary cloud brokerage architecture in this research that improves the

accuracy and efficiency of cloud service selection substantially. The B-Cloud-Tree indexing

structure, which enhances cloud service provider (CSP) information organization,

management, and retrieval, is leveraged by the suggested architecture. The B-Cloud-Tree

0

1

2

3

4

5

6

7

Precision Recall Indexing Overhead Scalability

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

17

facilitates quick and accurate matching of user requirements with available CSPs through

property encoding, indexing key generation, interval queries, and an effective search

mechanism. Comprehensive experimental assessments show that our solution performs better

than current approaches in terms of match rate, scalability, precision, recall, and query

execution time. The efficacy of each component in the B-Cloud-Tree framework is further

validated by the ablation study, which further emphasizes the framework's capacity to handle

the complexity of cloud service selection. The B-Cloud-Tree architecture offers a scalable and

dependable solution for cloud service brokerage, solving the issues brought on by the

increasing diversity and complexity of cloud services. It does this by lowering computational

overhead and enhancing service matching accuracy. This work lays the groundwork for future

improvements in cloud service selection algorithms and provides a solid basis for both

theoretical investigation and real-world implementation in cloud systems.

REFERENCE:

1. Settouti, A. K. Y., Didi, F., & Haddad, M. (2019). Improving cloud computing services

indexing based on BCloud-tree with users preferences. International Journal of

Internet Technology and Secured Transactions, 9(4), 475-490.

2. Solainayagi, P., & Ponnusamy, R. (2019). Resource Allocation Based on Matchmaking

Services in Multiple Clouds Using Trustworthy and Scalable Service Providers

Algorithm. International Journal of Intelligent Engineering & Systems, 12(4).

3. MOHAN, K. M., & PREMCHAND, D. Secured Cloud Service Selection using Merkle-

B Cloud Tree Indexing Strategy.

4. Vakili, M., Jahangiri, N., & Sharifi, M. (2019). Cloud service selection using cloud

service brokers: approaches and challenges. Frontiers of Computer Science, 13, 599-

617.

5. Mohanarangan Veerappermal Devarajan(2020). Improving Security Control In Cloud

Computing For Healthcare Environments- Journal of Science andtechnology. 5(06) -

2020

6. Khan, M. A. (2020). Optimized hybrid service brokering for multi-cloud

architectures. The Journal of Supercomputing, 76(1), 666-687.

7. Elhabbash, A., Samreen, F., Hadley, J., & Elkhatib, Y. (2019). Cloud brokerage: A

systematic survey. ACM Computing Surveys (CSUR), 51(6), 1-28.

8. Chauhan, S. S., Pilli, E. S., Joshi, R. C., Singh, G., & Govil, M. C. (2019). Brokering

in interconnected cloud computing environments: A survey. Journal of Parallel and

Distributed Computing, 133, 193-209.

9. Venkateswaran, S., & Sarkar, S. (2020, December). A new paradigm of cloud

brokerage. In 2020 IEEE Intl Conf on Parallel & Distributed Processing with

Applications, Big Data & Cloud Computing, Sustainable Computing &

Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom) (pp. 228-235). IEEE.

 ISSN NO: 9726-001X

Volume 9 Issue 02 2021

18

10. Nagarajan, R., & Thirunavukarasu, R. (2019). A fuzzy-based decision-making broker

for effective identification and selection of cloud infrastructure services. Soft

Computing, 23(19), 9669-9683.

11. Achar, R., Thilagam, P. S., & Acharya, S. (2020). Broker-based mechanism for cloud

provider selection. International Journal of Computational Science and

Engineering, 22(1), 50-61.

12. Latif, S., Gilani, S. M. M., Ali, L., Iqbal, S., & Liaqat, M. (2020). Characterizing the

architectures and brokering protocols for enabling clouds

interconnection. Concurrency and Computation: Practice and Experience, 32(21),

e5676.

13. Raj kumar gudivaka (2020). Robotic Process Automation Optimization In Cloud

Computing Via Two-Tier Mac And Lyapunov Techniques- International Journal of

Business and General Management. 9(5), Jul–Dec 2020; 75–92

14. Li, X., Zhang, C., Gu, B., Yamori, K., & Tanaka, Y. (2019). Optimal pricing and service

selection in the mobile cloud architectures. IEEE Access, 7, 43564-43572.

15. Lin, D., Squicciarini, A. C., Dondapati, V. N., & Sundareswaran, S. (2016). A cloud

brokerage architecture for efficient cloud service selection. IEEE Transactions on

Services Computing, 12(1), 144-157.

